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These heat-flow quantities are directed either in the x direction or in the y direction.
The total heat flow at any point in the material is the resultant of the gx and gy at that
point. Thus the total heat-flow vector is directed so that it is perpendicular to the lines
of constant temperature in the material, as shown in Figure 4.1. So if the temperature

distribution in the material is known, we may easily establish the heat flow.

Figure 4.1 Sketch showing the heat flow in two dimensions.

4.1 MATHEMATICAL ANALYSIS OF
TWO-DIMENSIONAL HEAT CONDUCTION

We first consider an analytical approach to a two-dimensional problem and then indicate the
numerical and graphical methods that may be used to advantage in many other problems.

It is worthwhile to mention here that analytical solutions are not always possible to
obtain; indeed, in many instances they are very cumbersome and difficult to use. In
these cases numerical techniques are frequently used to advantage.

Consider the rectangular plate shown in Figure 4.2. Three sides of the plate are
maintained at the constant temperature 7, and the upper side has some temperature
distribution impressed upon it. This distribution could be simply a constant
temperature or something more complex, such as a sine-wave distribution.We shall
consider both cases.

4.1.1 Seperation of variable method:

To solve Equation (4.1), the separation-of-variables method is used. The essential
point of this method is that the solution to the differential equation is assumed to take
a product form

T =XY 4.4
Where:
X=Xx),Y=Y()
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T=x)

Figure 4.2 Tsotherms and heat flow lines in a rectangular plate.

T _ dX

ax  dx

9*r _ d’x
dx% ~ dx?
Similarly,
9’1 _ d?*v
ay?  dy?

Substitute in equation 4.1

d?x
dx?

d?y
Y+d—sz—0

1d%X _ 1d%Y _ .o

Xdxz ;dy2

1d2X _ 42
X dx?

1d%y _ PE
Y dy?

From equation 4.7
& 4 X2% =0
dx? -

From equation 4.8

Solution of equation 4.9
X = AsinAx + B cos Ax

Solution of equation 4.10
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Y = Csinh Ay + D cosh 1y

General solution of equation 4.1

T = (Asin Ax + B cos Ax)( C sinh Ay + D cosh 1y)
Let0 =T —T,

0 = (AsinAx + B cos Ax)( C sinh Ay + D cosh 1y)

0=T-T,
.1-"
T=Ax)
=0
T=T, H 6=0
=T,
T=T, | x
W |
=0
B.C

Atx=0,0=0 forally
B=0

0 = (Asin Ax)(C sinh Ay + D cosh 1y)
Aty =10,0 =0 forall x
D=0

The general solution becomes:
6 = (A * C) sin Ax sinh Ay
LetA*xC=E

Atx =W ,0 =0 forall y

6 = E sin Ax sinh 1y

0 = E sin AW sinh Ay

sinAW =0
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Therefore,

1= % where, n = 0,1,2,3/4, ... ...
0 =Y 1E, sin%*sinh% 4.17

To evaluate E,,, sibstitute the last B.Caty = H

nrH

. . NTX .
T—-T, =Zn=1Ensm7*smh7 4.18
How to evaluate E,,

This is a Fourier sine series, and the values of the E, may be determined by
expanding the constant temperature difference T, — T; in a Fourier series over the
interval 0<x<W. This series is

2 -1yt | nmx
-1 =T2—T1;Z?{’=1( ) — 4.19
2 1 —-1)"* 14
En == (TZ - Tl) nnH( )
T Sinhv n
The final solution:
T-T; 2 o (-1)"+141 sin Sinhnwﬂ 420
T,-1, w&n=1 n w sinh% :

4.2 Numerical Method of Analysis

In many practical situations the geometry or boundary conditions are such that an
analytical solution has not been obtained at all, or if the solution has been developed,
it involves such a complex series solution that numerical evaluation becomes
exceedingly difficult. For such situations the most fruitful approach to the problem is
one based on finite-difference techniques, the basic principles of which we shall

outline in this section.

4.2.1 Finite Difference Tichnique

Consider a two-dimensional body that is to be divided into equal increments in
both the x and y directions, as shown in Figure 4.3. The nodal points are designated as
shown, the m locations indicating the x increment and the » locations indicating the y
increment. We wish to establish the temperatures at any of these nodal points within
the body, using Equation (4.1) as a governing condition. Finite differences are used to

approximate differential increments in the temperature and space coordinates; and the
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smaller we choose these finite increments, the more closely the true temperature

distribution will be approximated.

m, n+1

! f

Ay

m—1n mnulm+Ln 4,
& £ &

T

Ay

o n—1 l

a— Ax e Ay

Figure 4.3 Sketch illustrating nomenclature used in two-dimensional numerical
analysis of heat conduction.

The temperature gradients may be written as follows:

E_ i ?;J'r+1.r;' = Tm,rr
ax dAm+1/2.n Ax
E_ s Tm,n = Iln—l.n
x| m—1/2.n Ax
ﬂ_ g Tm,rr+1 7 Tm.n
dy dm.n+1/2 Ay
i_ s an,n == Il:u,n—l
dy dm.n—1;2 Ay
aT ] aT |
) o % Tt 2T
a-F e o dmlf2n dm—1/2.n n Tonsln+Tn—1n—2 m,n
ax? - Ax (Ax)2
aT aT 7]
3 o T om
=T S dy | m.a+1/2 dy dmn-1/2  Tmni1+Town-1—2Tna
8}!2 LT Ay {ﬁ-ﬂl

Thus the finite-difference approximation for Equation (4.1) becomes

Tm+1,n+Tm—1,n_2Tm,n Tm,n+1+Tm,n—1_2Tm,n —
2 + 2 =0
(Ax) Ay)

If Ax = Ay, then
Tm+1,n + Tm—l,n + Tm,n+1 + Tm,n—1 - 4'Tm,n =0 421
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Since we are considering the case of constant thermal conductivity, the heat flows
may all be expressed in terms of temperature differentials. Equation (4.21) states very
simply that the net heat flow into any node is zero at steady-state conditions. In effect,
the numerical finite-difference approach replaces the continuous temperature
distribution by fictitious heat-conducting rods connected between small nodal points
that do not generate heat. We can also devise a finite-difference scheme to take heat
generation into account.We merely add the term "¢/k into the general equation and

obtain

Tm+1,n+Tm—1,n_2Tm,n Tm,n+1+Tm,n—1_2Tm,n + g _ O
(&x)? (by)? k

Then for a square grid in which Ax = Ay,

qAx?

Tm+1,n + Tm—l,n + Tm,n+1 + Tm,n—l + Kk -

4Ty =0 4.22

To utilize the numerical method, Equation (4.21) must be written for each node within
the material and the resultant system of equations solved for the temperatures at the
various nodes. A very simple example is shown in Figure 4.4, and the four equations

for nodes 1, 2, 3, and 4 would be

100 +5004+T2+4+T3 —4T1 =0
T1+500+1004T4 —4T =0

[
i
L. T=100°C

L T=100°C

N T=100°C

Figure 4.4 Four-node problem.

100+ 71 + T4+ 100 — 4T3 =0
T3+ T+ 100+ 100 — 4T3 =0

These equations have the solution
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Ti=Tp =250°C T3—=Ti—150°C

Of course, we could recognize from symmetry that 71 =72 and 73 =74 and would then
only need two nodal equations,

100+ 500+ T3 — 373 =0
100+ T3 + 100 — 373 =0

Once the temperatures are determined, the heat flow may be calculated from

AT
f,rzz.k ﬂ.ra

where the AT is taken at the boundaries. In the example the heat flow may be
calculated at either the 500°C face or the three 100-C faces. If a sufficiently fine grid
is used, the two values should be very nearly the same. As a matter of general
practice, it is usually best to take the arithmetic average of the two values for use in
the calculations. In the example, the two calculations yield:

500°C face:
q = —ki—;[(zso —500) + (250 — 500)] = 500k
100°C face:

q= —ki—z[(ZSO —100) + (150 — 100) + (150 — 100) + (150 — 100) +
(150 —100) + (250 — 100)] = =500k

4.2.2 Energy Balance Method

In many cases, it is desirable to develop the finite-difference equations by an
alternative method called the energy balance method. As will become evident, this
approach enables one to analyze many different phenomena such as problems
involving multiple materials, embedded heat sources, or exposed surfaces that do not
align with an axis of the coordinate system. In the energy balance method, the finite-
difference equation for a node is obtained by applying conservation of energy to a

control volume about the nodal region.

Consider a control volume about the interior node m,n of figure 4.5.
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mon+1
T L]
Ay ————— === ——— -
1 1 T
o,
e ® |«——® Ay
m-1,n : m, n : m+1,n l
I_--T--- r
L ]
m,n—1
‘_A.Y_'

Figure 4.5: conduction to an interior node from its adjoining nodes.

Tmn—T, Tmn—Tm- Tmn—T Tmn—Tmn—
—kAy mn Axm+1,n _ kAy mn Axm in kAx mn Aym,n+1 — kAx mn Aym,n 1_ 0

Taking Ax = Ay, and simplify

Tm+in + Tm-1n + Tmnt1 + Tn1 — 4Tinn = 0

When the solid is exposed to some convection boundary condition, the temperatures
at the surface must be computed differently from the method given above. Consider

the boundary shown in Figure 4.5. The energy balance on node (m, n) is
Tm,n - Tm—l,n —k A_me,n - Tm,n+1 —k A_me,n - Tm,n—l

R T 2 Ay 2 Ay

= hAy(Tm,n —Tw)

If Ax = Ay, the boundary temperature is expresses in the equation

hA hA 1
T (S + 2) = 25 Ty = 2 (2Tean + Trngas + Trnnet) = 0 423

An equation of this type must be written for each node along the surface shown in
Figure 4.6. So when a convection boundary condition is present, an equation like
(4.23) 1s used at the boundary and an equation like (4.21) is used for the interior
points. Equation (4.23) applies to a plane surface exposed to a convection boundary
condition. It will not apply for other situations, such as an insulated wall or a corner
exposed to a convection boundary condition. Consider the corner section shown in

Figure 4.7. The energy balance for the corner section is

_kA_yM_ kA_xM — hij(Tm,n _ Too) 4+ h%(Tm,n _ Too)

2 Ax 2 Ay
If Ax = Ay,
2Ty (55 + 1) = 225 Ty = (T + Tranea) = 0 4.24
l m-1n m, i 1
T
I A3 i
—& m ri+1 5 I
| Too Ay ] o
. CT
m—1n __!__u M, A Ay I
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Figure 4.6 Nomenclature for nodal
equation with convective
boundary condition.

EXAMPLE 4.1: Nine-Node Problem

Oy dead elial

Figure 4.7 Nomenclature for nodal
equation with convection at
a corner section.

Consider the square of Figure Example 3-5. The left face is maintained at 100-C and

the top face at 500-C, while the other two faces are exposed to an environment at

100°C: h = 10 W/m® + <C and k=10 W/m.°C .The block is 1 m square. Compute the

temperature of the various nodes as indicated in Figure Example 4.1 and the heat

flows at the boundaries.

Solution

The nodal equation for nodes 1, 2,4, and 5 is

Tmtin t Time1in + Tintr + Tnn—1 — 4T

Node 1:

T, + T, + 500 + 100 — 4T, = 0
Node 2:

T, + T3 + Ts + 500 — 4T, = 0
Node 4:

T, +Ts+ T, + 100 — 4T, = 0
Node 5:

T2+T4+T6+T8_4‘T5:O

hax _ (10D _ 1
k ~ (3)(10) 3

Node 3:
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Ax T3_500 kA.x T3—T6

_kAyw —k
Ax 2 Ay 2 Ay

= hAy(T; — Te)

Ty (B2 4 2) =257, — 1 (2T, + 500 + T) = 0
Ty (5+2) = 3T — 3 (2T, + 500 + Tg) = 0

2T, + 567 + Ty — 4.67T; = 0

Node 6:

Ax T6—T3 k Ax T6—T9

Te—T:
—kAy6—5—k
Ax 2 Ay 2 Ay

= hAy(T; — Tw)
To(3+2) =3Tw—2Q2Ts+ T3 +T5) = 0

2T + T3 + Ty + 67 — 4.67Ts = 0

Node 7:

T,—T, Ay T, —Tg Ay T;,—100
—kAx L2 =T 8 _ =7 — hAx(T, —
kedx Ay k 2 Ax k 2 Ax h X( 7 OO)

Ty (5+2) = 3T =3 (2T, + 100 + Tg) = 0

2T4 + T8 + 167 - 4‘.67T7 = 0

Node 8:

Tg—T: Ay Tg—T: Ay Tg—T.
—kAx 25— X7 X80 — pAx(Tg — T)
Ay 2 Ax 2 Ax

To(5+2) = 3T —3@Ts + T +T,) =0

2Ts + Ty + To + 67 — 4.67Tg = 0

— T'=500°C —
v Ry

i 1 2 3
|
L
= Im
= 4 5 6
It T.=
"l“ 100°C
| 7 3 9

]

Figure Example 4.1: Nomenclature for Example 4.1.

Node 9:
Ax To—Tg AyTo=Tg _ , AX o Ay (m
k= Ay kS = _hz(T9 "")-le(T9 )
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2T, (B + 1) = 2225 T, — (T4 + Tg) = 0

27"9(§+1)—§Tw—(T6+7"8) =0

To+ T+ 67 — 2.67Ty = 0

We thus have nine equations and nine unknown nodal temperatures. We shall discuss
solution techniques shortly, but for now we just list the answers:

Node Temperature, °C
1 280.67
330.30
309.38
192.38
231.15
217.19
157.70
184.71
175.62

O 00 3O\ LN B~ Wi

The heat flows at the boundaries are computed in two ways: as conduction flows for
the 100 and 500-C faces and as convection flows for the other two faces.

For the 500-C face,

the heat flow into the face is

g=Y kAxi—; = (10) | (500 — 280.67) + (500 — 330.30) + (500 — 309.38) (5 )|
q = 4843.4 W/m.

The heat flow out of the 100-C face is

q =T kdy S = (10)[(280.67 — 100) + (192.38 — 100) + (157.7 — 100) (5 )|
q = 3019 W/m.

The convection heat flow out the right face is given by the convection relation

q= ZhAy(T_Too)
q=010)) [309.38 — 100 + 217.19 — 100 + (175.62 — 100) (%)]
q = 1214.6 W/m.

Finally, the convection heat flow out the bottom face is

q =Y hAx(T —T,)

q=0103) [(100 —100) (3) + (157.7 = 100) + (184.71 — 100) + (175.62 — 100) (%)]

q = 600.7 W/m.

The total heat flow out is
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